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It is shown that the rule for obtaining probabilities by squaring amplitudes 
is deducible from ideal experiments in a mechanics of unitary motion in a 
complex-linear space, with tensor product for making compound systems. 
Difficulty with tensor product in undoctored quaternionic quantum 
mechanics makes the argument inapplicable there. Except for the replace- 
ment by ideal experiments of a more formal unitary equivalence, the dis- 
cussion is similar to that of Everett (1957). Diagonal expression of a general 
vector in the tensor product of two spaces is related to polar form of a 
matrix, in the Appendix. 

1. I N T R O D U C T I O N  

This article reviews the ordinary theory of  measurement in quantum 
mechanics, but is new in that  the rule that  probabilities are absolute-squared 
amplitudes is deduced by arguments involving ideal experiments. The aim is 
to assume the mechanics, and to deduce the interpretation. Therefore, a 
complex-linear space o f  states, motions unitary with respect to a Hermitean 
form, and tensor product for putting systems freely together are assumed. 
Nevertheless, the arguments  involving thought  experiments make a further 
appeal to c o m m o n  sense, in a way which it would be inconvenient to state in 
advance in axiomatic form. The most  formal  device in these experiments is 
the convention that  a system may be forced to execute any unitary trans- 
format ion as a possible mot ion ;  I expose this axiomatically here because it 
would be unfair  to pass it off as c o m m o n  sense. But, see Lubkin (1974). 
Complicat ions which might  arise f rom adapting the discussion, given for  
finite-dimensional inner-product  spaces, to an infinite number  o f  dimensions, 
are not  discussed. 

The probabili ty interpretation implies unitarity o f  the mot ion and tensor 
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product for putting systems freely together. [Tensor product means that the 
states i---> a~ and j---> bj, wherein an a system has its state specified by 
amplitudes a~ for alternatives indexed by i, are combined by alternative- 
pairing and amplitude multiplication, into (i, j )  -+ a~bj. Thus, if the separate 
spaces have dimensions nl, n2, the linear space for the compound system 
spanned by the tensor products has dimension nln2. That the (i, j ) th  amplitude 
squares to the product of the probabilities [a~l 2 and lbjt 2 shows that it must 
be a~bj up to a phase; to have this for all a-system orthonormal bases and 
b-system orthonormal bases removes the relative phase ambiguities.] This is 
to remind the reader how the mechanical principles of unitarity and tensor 
composition were discovered; but it is the converse proposition, that the 
mechanics alone leads to the squaring rule for probabilities, which is the 
point here. 

The main argument is in Sections 2-9. Then come "Historical Remarks," 
etc. at the end, so as not to disturb continuity of argument. 

2. ORTHOGONALITY OF STATES W H ICH  INEVITABLY 
INDUCE DIFFERENT RECORDS IN AN INSTRUMENT- AND 
REPLACEMENT OF THE INSTRUMENT BY A HERMITEAN 

OPERATOR (Wigner, 1952) 

Let X~yo --> x~y~ denote the evolution in time of a state x~ for an x system 
("system of interest") together with an observer or instrument, a y system, 
from a time before the development of a record to a time after. (The notation 
x~y~ would suggest a "recoil" of x~ in response to its interaction with the 
instrument, an inessential complication.) y~ is an instrument's state which 
bears the record that some macroscopic indicator reads i. Thus, x~ is a state 
of the system which inevitably produces the record i in a y instrument. If, 
moreover, instrument states y~ and yj are grossly distinct, then the corre- 
sponding system states x~ and xj are so different that they never produce the 
same result in a y measurement. 

Then an argument of Wigner (1952) deduces that such x~, xj are orthog- 
onal: The final states x~y~ and x j y j  are obviously orthogonal, owing to the 
gross ("macroscopic") difference in the instrument's states y~, yj, whence X~yo 
and x jyo  were also orthogonal, owing to unitarity of the motion. Then 
(x{yo, xsyo) = (x~, x j )(yo,  Yo) = 0 gives (xi, xj) = 0. 

The obvious orthogonality of x~y~ and x j y j  rests on the tensor-product 
combination of systems. Thus, if the instrument y has a subsystem, say, a 
pointer tip, which is obviously in mutually orthogonal parts of its state space 
on comparing y~ and yj, one deduces that (x~y~, x j y j )  = 0 without worrying 
about the remainder of the instrument or the x system, because (except for an 
inessential matter of linear combination) the inner product of a compound 
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system is a product of inner products of tensor factors, and vanishes if any 
factor vanishes. It  must be agreed that the inner product is so chosen that 
grossly distinct states are orthogonal; "macroscopic" need signify no more 
than this grossness. 

Thus, associated to an instrument y, there is a family of mutually 
orthogonal subspaces of x space [subspaces: if y~ = yj, then (x~ + ~xj)yo -+ 
(x~ + ~xj)y~], labeled by the distinct y outcomes. Let the range of x states be 
limited to the space generated by these sure-outcome-labeled subspaces, so 
that completeness is tautological. 

I f  P~ is the projection on the ith x subspace, and if the distinct outcomes 
are labeled by distinct real numbers h~, then Y = ~ A~P~ is the usual Hermitean 
operator acting on x space conveniently associated with the process of  y 
observation. This is how I teach the assignment of  a Hermitean operator to a 
process of  observation. 

3. T H E  APPEARANCE OF PROBABILITIES 
O T H E R  T H A N  0 A N D  1 

The state ~ a~x~yo evolves into ~ a~x~y~ by linearity of the motion. The 
idea that "the result" of  a y observation on a nontrivial superposition of Y 
eigenstates will be seen in a simple sense by following the motion of the x-y  
complex, is frustrated by the production of a state with different gross 
attributes in different terms (yon Neumann, 1932, 1955). This "ambiguity" 
is commonly taken to end the attempt to so use the motion; probabilities 
l a ~[2 (with the x~, y~ normalized) are adopted as a reflection of "ambiguity." 
This is correct, but too fast. 

First, is a notion o f  probability really forced ? That an observing y system 
will be forced to use probabilities is easy to see, if a y system is allowed to 
make a run of experiments on identically prepared states, instead of a single 
measurement. 

To see this one must look at a run because it is the appearance of  different 
outcomes in a run of identically prepared trials which constitutes the experi- 
ence of nontrivial probability, defined as the ratio of"successes" to trials in a 
long run. 

The " run"  experiment, n trials, is 

where Yo ..... o is the instrument ready to record the n outcomes, and y~ ..... ~ 
has recorded the outcomes, ik in the kth trial. Among these there are observer's 
states with all i~ equal, that have not learned about the statistical aspect of 
the experiment, but there are others with i~'s not all equal, who must quote 
empirical probabilities other than 0 and 1 for some outcomes. 
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That states extreme as extreme points in the convex body of 
all mixtures need not be and here are not characterized by 
having only 0 and 1 as probability values, is discussed at length 
by von Neumann (1932, 1955). The point here is that in a discussion 
wherein states (which become known as pure states after we have 
the probabilities, so that yon Neumann's analysis applies) are 
conceived of mechanically, the occurrence of probability values 
other than 0 and 1 is also understood mechanically. The "causal" 
propagation of wave functions itself forces included observers 
to experience nontrivial probabilities. 

4. W H Y  RUNS ARE N O T  USED FURTHER 

The temptation is now strong to deduce the rule that la,] 2 is the ith 
outcome's probability, by examining the empirical probabilities: Y~I ..... ~ has 
the subscript i appearing exactly ~ = 1  ~,~ times, giving the unambiguous 
empirical probability ~ = 1  3~.~Jn. Each run has a definite empirical proba- 
bility, which seems to leave no room for further theorizing. Unfortunately, 
the variety of empirical probabilities obtained, as the variety of runs y~z ..... ~ 
is all surveyed, is independent of the a~'s (excluding a~ = 0). Only by selecting 
a family of typical observers may the a~'s become relevant: some runs are 
more important than others. This requires a weighting of run-indexed 
observer's states by probabilities, for which one can posit the squared 

a 2 amplitudes [ ~ ..... ~,l = ]-i?~=~ [a~[ 2, which, however, would put one logically 
back to zero. Perhaps one can yet use the run together with common-sense 
assumptions or formal axioms (Hartle, 1968; Finkelstein, 1963). I instead 
prefer to use the run only in the deduction above that observers experience 
probabilities and hence will demand some rule i --+ p~ for assigning probabil- 
ities to alternatives, and go to other arguments to fix the detailed rule. 

The defeating point, in summary, is that the list of all 2 n possible runs 
for throwing a loaded (2-faced) coin n times contains no information about the 
loading, in spite of the fact that each run on this list does present a sharp 
opinion about the loading. 

5. P S Y C H O P H Y S I C A L  PARALLELISM 

If  a z system records the result obtained by the y system, we have in 
obvious extension of the notation, ~ a~x~yozo --~ Y a~x~y~zo --> ~ a~x~y~z~. This 
final state is no t  a general state in xyz  tensor-product space (this is unlike the 
case for 2 tensor factors; see Appendix), but no difficulty will arise therefrom. 

By kinematically limiting the yz  instrument's space to the 
space generated by the y~z~, excluding the y~zj with i # j, the 
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"general-state" form may be restored. The y~z s with i :~ j would 
represent incorrect transmission of the record. 

Von Neumann 's  main argument (1932, 1955) is that the probabilities 
for the/- indexed alternatives are indifferent to whether the system's state is 
cut off from the instrument in the form ~ a~x~, or in the form ~ a~x~y~. The 
proof  is simply that p~ = la~l 2 for either [i.e., that [(x~,~ajxj)[2= 
[(x~yi, ~ ajxjyj)] 2, to give it a decently complicated appearance]. Though 
computationally trivial, it has significance. Two processes, law of motion of 
the wave function and reduction of wave function to probabilities, fit together 
smoothly: Whether the intermediate y part  is part  of the motion-treated 
state vector, or part  of  the nondescribed reducing instrument, the result is the 
same. Because the motion is an aspect of  the theoretical dynamics ("physical") 
whereas the reduction is directed to the psychological reality of an observer's 
"result," this goes by the name of "psychophysical parallelism." The trans- 
mitting system y can be treated equivalently by either of the two mechanisms 
which are therefore satisfactorily parallel. 

6. CASTING AWAY T H E  UNIT VECTORS;  
T H E  F I R S T  I D E A L  E X P E R I M E N T  

The probabilities i --> p~ depend on the state vector ~ a~x~ and on the basis 
(xl . . . . .  x~) separated by the measurement, and not on the instrument's states 
y~ in ~a~x~y~, by the principle of  psychophysical parallelism. Thus, the p~'s 
depend only on the list of amplitudes and orthogonal unit vectors (al . . . .  , a~; 

X 1 ,  . . . ,  X n ) .  

The following argument concludes that p~ is the same for (al , .  �9 a , ;  
t t x'~,..., x,), where the x~ are any other orthogonal unit vectors, and therefore 

only on (al, �9 �9 a,). 
Let y be an instrument which separates the x~ and also separates a list 

of  orthonormal vectors u~ in a space orthogonal to that generated by the &, 
but which does not distinguish between x~ and u~. Consider the scheme 

E a,x~yo-~ E aiu, yo v E a,u,y, 

E a,x, yo v_~ E a,&y, ~ E a,u,y, 

V is the motion by which measurement is achieved; U is a motion 
which rotates the x basis into the u basis, Ux~ = u~. Since the same final state 
is attained, i--+p~ must be the same. In the first case, the data are (a~ . . . .  , a , ;  
uz, . . . ,  u~) ; in the second, before the Umotion, they are (a~ . . . .  , an; x~ . . . . .  x,). 
The U motion does not modify the results, because x~ ~ u~ does not change 
the y property. 
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N o w  consider the same argument ,  where, however,  an x '  basis is U'  
rotated to the same u basis, and a y '  ins t rument  separates the x~, the us, but  
not  x~ f rom us; the scheme is 

E ' a+xiyo aiu~yo --> a~uiy+ 

E a+x:y'o -~ E a+x;y;-~ E a+u++y; 

The conclusion is that  (a~ . . . .  ,a+;u~ . . . . .  us) yields the same p+'s as 
(al . . . . .  a , ;  xl,  �9 �9 x~). 

Consequently,  the (az . . . .  , a . ;  x l , . . . ,  x~) and the (a~ . . . .  , a , ;  x[ . . . .  , x~) 
yield the same p+'s. 

The u+ were used to avoid difficulty which would otherwise arise f rom 
possible linear dependence of  (x~ . . . . .  x, ,  x[ . . . . .  x~). 

7. CASTING AWAY THE P H A S E S  

I t  follows as a corollary that  the p+'s are the same for  (la~[ . . . .  , [a,[) as 
for  (al, � 9  a , ) :  F rom E a+x+y+ = • [adx;y+, where x~ = a+la+l-ix+ (zero terms 
are omitted),  either o f  (x,) or (x'O is a separat ion basis for  the y measurement ;  
also, ~ a+x~ = ~ [adx;. Therefore  the same p+'s follow f rom ( a l , . . . ,  a~; 
x l , . . . ,  x~) or from ( laz] , . . . ,  Ia~[; x l , . . . ,  xL), and f rom the result of  the last 
section, the x+ or x~ may  be omitted.  

Therefore,  p+ = f , ( l a l l , .  �9  [a~[). By relabeling, the general result may  
be had f rom pz = f~ ( l ad  . . . . .  ]a~[) = F([all, . . . ,  [a~[). 

The following a rgument  shows that  F does not  actually depend on the 

8. CASTING AWAY THE OTHER AMPLITUDES 

Let y be a crude instrument,  which separates x~ (recording state yz) f rom 
the space generated by x2, . . . ,  x , ,  but  which does not separate these f rom 
each other (recording state y ~> 2). 

Consider the schemes 

E aix~yo v~ (alxl + E 

V 
E a+xtY~ + E 

i>~2 

, )  v , 
a~x+ Yo --* a~x~y~ + a~x+y~2 

+ ) 2  

aixiy>~2 ~ alxlyl + aixiy>~2 
+>--2 

V is the mot ion  which eventuates in measurement ,  U a general unitary 
t ransformat ion  mot ion  in the x>~2 space or thogonal  to xl,  which leaves xl  
fixed. The f reedom of  choice of  U is expressed by arbitrariness of  the a~, 
subject to 

la',l~= ~ [a,[2= 1 - l a d  ~ 
i~>2 i~>2 
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As before, identity of  the final states guarantees that pl is the same in 
both schemes; in the second one, it is established when the amplitudes are 
(al, a2, . . . ,  aN), but is unaffected by the subsequent U motion, the result 1 
and the state xl being unchanged; the change of state for the result >/2 
being such as not to affect the result. 

! 

By choosing a'2 = ( 1  - l a ~ [ 2 )  ~;2,  a~ . . . . .  a ,  = 0, one obtains 

Pl = F(lazl, (1 - laz]2) 1/2, 0 . . . . .  0) - / ( [ a l [  2) 

which is explicitly a function of [az], or equivalently of  bl = taxi2, only. 
Since a fine measurement may be made subsequent to the coarse sorting 

into bins 1 and /> 2 by separating the bin /> 2, without affecting the ratio 
(1-outcomes)/(trials), the p~ for the above coarse measurement must apply 
also to a fine measurement. 

Therefore, there is a universal function f of  one variable such that 

p~ = f (bd,  where b~ = ]a~[ 2 

9. T H E  ABSOLUTE-SQUARE RULE 

To show tha t f (b)  = b: Construct a state (using, if necessary, a suitable 
freely presumed unitary motion, starting from a state with bl = 1), with 
bl  = b2 . . . . .  b~ :-  1/n. Since each p~ = f(1/n) and ~ : ~  p~ = 1, we have 
~ = l f ( 1 / n )  = 1, o r f ( 1 / n )  = 1/n. Hencef (b )  = b is proved for numbers of 
form 1In, with n a positive integer. 

Next, suppose b + ~ 1/n = 1, 0 ~< b ~< 1, where the sum is of some finite 
number of  fractions of form 1/n. Build a state with b~ = b, using for the other 
b, the fractions in that finite sum: we will have a unit vector because these 
numbers add to 1. Thenpx = f ( b ) ,  and ~,>A P~ = ~ f ( 1 / n )  = Y. 1In = 1 - b. 
But also, ~ ~> 2 P,  = 1 - p,, whence p~ = b; again f ( b )  = b. 

The set of b for which f ( b )  = b is proved now includes the numbers 
between 0 and 1 of  form 1 - ~ 1In. Among these are all the terminating 
binary fractions, a dense set; hence continuity o f f  would imply f ( b )  : b in 
general, concluding the argument. It  is reasonable to presume continuity, 
because the amplitudes of a state cannot practically be determined with 
precision. A discontinuous rule f rom the amplitudes could not fit stable 
empirical application of the rule. 

10. LANDAU TRACING 

Since the measurement process is now reduced to the usual rule p , ( x )  = 
[a,l 2, a~ = ( x ,  x ) ,  for the probability of the ith outcome from state x, we have 
in the usual way the formula Tr P Y for expectation values of observables Y 
in vector states, and then in mixtures thereof by convex combination. (As 
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previously noted, the vector states are then seen to be pure in the sense of 
extreme points among the mixtures, in the usual way.) 

If now the projection density matrix Pz~x~y~ for the pure state ~ a~x~y~ 

is used in conjunction with observables A which act only on the x system, 
A = A' | 1, in the usual way, the tracing out of the y indices provides a 
reduced density matrix P '  and an expectation-value formula Tr P'A '  with all 
quantities referent to the x system only, where P'  is the diagonal matrix on the 
(x0 basis with diagonal elements [a~l 2. Amplitudes as have been replaced by 
probabilities l a~l 2 by explicitly ignoring the observer y. Ignoring the y observer 
was not automatic here and required tracing out because we are here pre- 
tending not to be ourselves the y observer. In this sense, the mechanism of 
Landau (1927) wherein confinement of attention to a subsystem yields a 
reduced density matrix with extra entropy, although derived from measure- 
ment theory, then encompasses measurement theory. Were the density- 
matrix formulas regarded self-evident, this would even be an independent 
derivation of the probability interpretation! But even if the probability 
interpretation is attained otherwise, as for example in the preceding sections, 
Landau tracing teaches us something. Namely, Landau's tracing out of 
superfluous indices applied to the state-vector treatment of measurement by 
motion demonstrates that the quality of the ]a~l 2 as probabilities emerges 
computationally from the violence done to the state function by an observer's 
necessary self-ignoration. 

The ugliness of the probabilities is a necessary reflection of the ugliness 
of exploring a state by looking into the memories of computers described 
along with other junk within the state. A temporal sequence would seem also 
to be suspect as a necessary artifact of this mode of analysis (and an artifact 
associated with increasing entropy). It seems fortunate that the crude nature 
of backwards-memory exploration of dynamics could become evident in a 
context in which the dynamical entity itself, the state, evolves naively in 
"time." Wanted: a dynamics without time, and therefore in all probability, 
without space. 

11. DIFFICULTY WITH QUATERNIONIC 
QUANTUM MECHANICS 

In the lattice-of-tests theory (Birkhoff and yon Neumann, 1936; Jauch, 
19681), possible systems admitted by all the axioms include real and quater- 

1 This emphasizes the lattice-theoretic viewpoint, and has numerous pertinent references. 
The peculiar omission however of references to the many-worlds interpretation is 
mirrored in a degree of awkwardness in the discussion of some of the "paradoxes." 
Further similar material might be extant from the Lattice Theory and General Quantum 
Mechanics Symposium, 26-28 December 1968, University of Missouri-Rolla, Rolla, 
Missouri. 
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nionic quantum mechanics (Finkelstein et al., 1962) as well as the usual 
complex quantum mechanics. The arguments here are unchanged if the a~ are 
real, but not if they are quaternions. 

Starting with the rule that p~ = [a~[ 2, with quaternionic amplitudes a~ 
calculated by inner products with orthonormal quaternionic unit vectors, 

defined (x, y) =- ~ x~y~, one does succeed in writing ~ p~A~, A~ real, as (x, Hx), 
with (x, Hy) = (Hx, y), and (Hx)~ = ~ H~jxj, given by a quaternionic matrix 
acting on the left, and right-linear (i.e., H(x + yq) = Hx + (Hy)q, for q a 
right quaternionic "scalar" factor). Also (x, y q ) =  (x, y)q, and (xq, y ) =  
q(x, y), but (x, qy) = (glx, y) only; a left scalar would not come out of an 
inner product. 

However, there is no obvious notation for tensor product; using (i, j)---> 
x~yj allows for a pathological x left linearity, and a y right linearity; (i, j, k) -+ 
x~yszk leaves a y factor with no linearity. Going from system to subsystem by 
"ignoring" in a 2-system density matrix is stopped by (x, Hx) failing to turn 
into a density-matrix formula; ~ ~Hijx  s r ~. xj~Hij, owing to the non- 
commutativity of the quaternions. Difficulty in forming tensor product is 
noted in Finkelstein et al. (1962), but it is not clear that this difficulty is 
overcome there. 

The idea that an observer be alternatively a subsystem is part of psycho- 
physical parallelism, of the Wigner argument, and of the program of finding 
a mechanical underpinning for the interpretation. 

The arguments presented above for the statistical interpretation of com- 
plex quantum mechanics, therefore do not extend to quaternionic quantum 
mechanics, owing to the character of quaternionic quantum mechanics in 
being an axiomatic confrontation between states and tests not adequately 
equipped with a mechanism for compounding systems. 

12. HISTORICAL REMARKS 

Although my meager reading will not support a historical survey (Jauch; 
1968; Thomas, 1958; Ludwig, 1961; Wigner, 1963; de Witt and Graham, 
1973), I append this section and the next in order to orient my own remarks 
with respect to other work. 

A fantastic insight appears in Lucretius (~  55 B.C. ; Latham, 1951). Since 
a symmetric initial state may not evolve neatly and causally into a random 
world, Lucretius suggests slight departures from causality. Dirac (1938-1939) 
also notes that quantum jumps may suffice to produce the randomness for 
thermodynamic equilibration. That Landau tracing is jumpy enough: Lubkin 
(1978). 

The Copenhagen school and "viewpoint" are too well known to require 
comment. 
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The finishing touch to this work is von Neumann's remarks on measure- 
ment theory per se and on its relationship to thermodynamics (1932, 1955) 
where he credits Landau (1927) with the discovery that the density matrix 
appropriate to a subsystem usually has nonzero entropy even if the larger 
system has none. This suggests that the Lucretian randomness is not funda- 
mental, but is an artifact of looking at things incompletely, a point that is 
clinched by the logical impossibility of inclusion of an instrument or of himself 
by an observer whose aim it is to consider that instrument only incidentally. 

Readers of von Neumann's book have frequently and independently 
understood this message, in spite of his warning (von Neumann, 1955, pp. 
419-420) that a mind must interpret a physical system in terms of probability- 
weighted results obtained by an axiomatically independent process. The deriv- 
ative character of the probabilities and a review of the yon Neumann work 
was given in sharply didactic form by Everett (1957) and Wheeler (1957). 

The point of the present paper is that I prefer to replace a completely 
formal usage of unitarity in Everett's work by the unitarity of the motion in 
ideal experiments. 

Everett emphasizes the tree of alternatives which is developed by 
measurements. This is basic to understanding Einstein-Podolsky-Rosen 
effects (Einstein, Podolsky, and Rosen, 1935; Dicke and Wittke, 1960), and 
generally in understanding yon Neumann. It appears as the "cat-in-the-box" 
experiment (Schr6dinger, 1935; Jauch, 1968) of the "Copenhagen viewpoint." 
Truncation of the tree to uncorrelated branches is the entropy-increasing 
process of Landau. Yet ever since people worried about spreading wave 
packets, there is a feeling that the dilution of the wave function in a tree cannot 
somehow fit with the apparent substantiality of the world. Although an 
observer looking back into his memory is obviously never bothered about his 
own unsubstantiality ["I think, therefore I am" (Descartes, 1637)], I find it an 
additional if superfluous comfort to note that a more numerical substantiality 
is embodied in the conservation laws, and that these laws have no reference 
to the treelike complexity which may be discerned in a wave function: 
substantiality is unworried by trees; each branch has all the baryons. 

13. RELATION TO THE LATTICE-THEORETIC 
("EXISTENTIAL")  A P P R O A C H  

Von Neumann has done the best, in a certain existential sense, with 
lattice of tests, and states (assignations of probabilities to tests) over it 
(Birkhoff and yon Neumann, 1936; Jauch, 1968): unpredictability tempered 
by probabilities is the primitive experience (Descartes, 1637); therefore a 
work like this present one which looks into a mathematical "machine" first 
in order to later find observers in the machine and ask about their memories, 
is in this existential view nonoptimal. 
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Two excuses." 
1. It is nice to see the probabilities deduced, nevertheless; to see how 

the statistical character may be viewed as the fault of making contact with a 
nicely operating machine by the ugly approach of gathering up memory 
sequences in recording machines: ! think, therefore I distort. 

2. Even existential physics builds a physical model, which then does 
hold up the physical end of psychophysical parallelism. Thus, even if the 
existential approach is superior in its minimality, it generates a mechanism, 
and seeks the observers in the mechanism. There is a circle here. Where one 
breaks into a circle is to some extent arbitrary. Breaking in at different points 
involves different kinds of axioms, however, and therefore breaking in 
variously allows for more opportunities to modify current theory. Thus, the 
lattice-state approach contains axioms which are obvious from the nature of 
observation, e.g., the existence of an opposite to every test (interchange the 
labels "success" and "failure"), but also axioms (e.g., the "modular" axiom) 
whose only excuse is a superficial crispness of form ("clarity"), and that they 
work for the classical and finite-dimensional quantum mechanical cases: yon 
Neumann himself invites (Birkhoff and von Neumann, 1936, Section 18; 
von Neumann, 1955, p. 309) the reader to criticize these weak axioms, and 
hopes to find more systems in the lattice-state mode of reasoning by doing so 
(motivation for his work on "continuous geometries"). Starting elsewhere on 
the psychophysical circle may profitably enlarge the scope for creating 
modifications. 

Imagine, for example, a mechanical approach wherein the 
observers are found only by making an approximation. It may be 
very difficult to reason backwards to certain important, simple 
features of the machine from the existential data of such observers; 
i.e., nice underlying features may turn into ugly, small effects in 
the observers' data, and may therefore elude discovery from the 
lattice-state approach. 

Caveat: In the existential approach, purity of a state is its property of 
being an extreme point. "Mechanical" may be defined as the preservation 
of such purity within the general motion of mixtures. It is not obvious that 
laws of motion, mechanical in this sense, are necessary (Thomas, 1958; 
Ludwig, 1961; Wigner, 1963). Starting with a "machine" and then finding 
the observers does not beg this question, as the way the observers see the 
"machine" as revealed by their memory records need not be "mechanical" 
in the sense of preservation of purity by what they describe as "motion." 

Of course, in the main discussion here, the particular assumptions of 
complex linearity, unitarity of motion, and tensor-product composition fit 
only the usual quantum mechanics, and is "mechanical" in both senses. 
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We perversely feel that we understand something only when that under- 
standing involves an approximation. Linearity in quantum mechanics suffers 
from absoluteness. I f  only we could feel that linearity applies because some- 
thing is small! How departure from linear unitarity affects the statistical 
"facts"  seen by internal observers is an issue which would therefore make us 
feel better even about the linear unitary case. Such thoughts are close to 
recent work of Bodgan Mielnick (1977 or 1978). 

APPENDIX.  R E L A T I O N  OF D I A G O N A L  F O R M  F O R  A 
TENSO R -P R ODUC T SPACE VECTOR TO POLAR 

F O R M  OF A M A T R I X  

Von Neumann (1932, 1955) introduces the operation (yj, ~ a~x~y~)--> 

ajx j  of partial inner product, essentially Everett 's (1957) "relative-state" 
operation, in proving that the form ~ a~&y~ of a "measurement state" is not 
formally distinct from the form ~ a~jx~yj of a general state in the tensor- 
product space. (The state space of the y system is severely restricted here; 
e.g., broken states of the instrument are not admitted.) This is nice to know, 
to prevent pointless work on bringing out nonexistent special attributes of 
measurement, but is not essential. 

The following reference to polar form may be useful in locating this item 
in the usual operator-theoretic paraphernalia: 

To show that there exist unitary transformations x~ = Y. u~x~ and 
y j  = ~ vi,~Ym such that ~ a~jx~yj = ~ a~x~y~, note that the former is 

" - 1 -  - - 1 "  ' ' ) j m X k y  m a~j~u )~k(v )ymx~cy m = (t u-1)kCa,y(v-1. , , 

Whence the problem is equivalent to finding unitary matrices U, V so that 
U A V  is diagonal. By writing A = P W  in polar form, P Hermitean non- 
negative, and W unitary, and then unitarily diagonalizing P, P -- U - 1 A ' U ,  
A' diagonal non-negative, one obtains A = U - I A '  U W ;  or A' = UA V, with 
V = W -  1 U- 1. I f  A is not originally a square matrix, make it square by adding 
zero rows or columns, to simplify the grammar. 
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